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Abstract. By a rigorous analysis for diffusion on a wire network, the spectral dimension 
of a fractal is shown to be independent of the local structure. It is discussed that diffusion 
does not occur when the lattice spacing tends to zero on such a fractal that the spectral 
dimension is less than the Hausdot3 dimension if a free field on the fractal exhibits a 
certain long distance behaviour. For a Sierpinski carpet, the spectral dimension is evaluated 
within the bond-moving approximation (Migdal-Kadanov renormalisation). As a result, 
we obtain a value smaller than the Hausdofi  dimension. 

1. Introduction 

Fractal structures are characterised by dilation symmetry in contrast to Euclidean 
spaces with translational invariance. Recently, there has been a good deal of interest 
in a fractal space (Rammal 1984) mainly (i) as a situation to reconsider our familiar 
notions, e.g. dimensionality (Alexander and Orbach 1982, Rammal and Toulouse 1983) ; 
(ii) as a base space of a statistical mechanics (Gefen et al 1984, Suzuki 1983); (i i i)  as 
a structure on which we can define a real-space renormalisation procedure (Hilfer and 
Blumen 1984) : and (iv) as a mathematical tool describing random figures with statistical 
self-similarity, e.g. the percolating clusters at threshold (Alexander and Orbach 1982, 
Rammal and Toulouse 1983). 

A fractal is described by various metric properties, e.g. the Hausdorff dimension 
d, which measures the density of (sites of) the fractal embedded in a Euclidean space. 
In the physical context, one is led to another kind of dimensionality and to the notion 
of the intrisnic property of a fractal, i.e. a property independent of the embedding 
(Rammal er a1 1984a, b, Havlin and Nossal 1984, Vannimenus et af 1984, Havlin 1984). 
The spectral dimension d’ is the first and the most important intrinsic characteristic of 
a fractal. 

In this paper we will pay some attention to some basic mathematical properties of 
the spectral dimension. Our problems are: 

(i)  As mentioned above, d is independent of the embedding. But we further expect 
that d’ is determined by the global topology of a fractal. We have to prove rigorously 
that d’ does not depend on the local structure of a fractal ( 0  3). 

(i i)  In the constructive field theory based on the lattice regularisation, it is essential 
to take the continuum limit, i.e. a limit as the lattice spacing tends to zero (Frohlich 
1982). Consider the continuum limit of a diffusion process on a fractal and show the 
complete localisation in the continuum limit on such a fractal that d‘< d (0  4). 

(iii) Except for the regular lattices, any fractal for which d‘ has been evaluated 
satisfies d’ < d: If d’ = d, the fractal will be infinitely ramified. Apply the bond-moving 
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approximation (Migdal-Kadanov renormalisation) (Burkhardt 1982) to a Sierpinski 
carpet and obtain an approximate value of d’ (8  5) .  

Our arguments are based on the wire version of the diffusion problem (Alexander 
1983). The solution is written as a two-point function of a free field ( $ 2 ) .  Our 
consideration of the wire problem is essential for the study of the continuum limit. 
Furthermore, it enables us to utilise the dependence of the density on the lattice spacing. 
In the appendix, basic estipates for free fields are shown. In this paper we only 
consider fractals for which d < 2 holds. 

2. Solution of the wire problem 

We consider a connected network I which has countably many vertices. Let V and 
B be the set of all vertices and the set of all bonds (wires) of 2, respectively. We 
assume the following properties for 2: 

(I; - 1 )  The length anm of a bond (n, m) E B is uniformly bounded from below, i.e. 
we can find E > 0 so that 

an,>& ( n ,  m)E B. (2.1) 

(Z-2 )  Each vertex is connected to a uniformly bounded number of bonds, i.e. 

for a constant N independent of n E V, where the summation is taken over all m E V 
such that (n, m) E B. 

In this paper we call a network with the above properties simply a network 
Choose an origin O E  V arbitrarily. Then diffusion on Z from 0 is described by 

( a / a t ) u (  t, x) = Au( t ,  x) t > 0 on bonds (2.3) 

where -in+,,,( r )  gives the gradient ( a / a x ) u (  1, x) at x = n E V along the direction from 
n to m. The essential point of the problem is to determine the density u( t ,  n) at each 
vertex n~ V. We denote by - the Laplace transform with respect to the time t and 
the dual variable is denoted by p. Put G,( p )  = C( p, n) for n E V. The following lemma 
is given by Alexander (1983) without proof. 

Proof. We consider diffusion on an interval [0, a ]  for a > 0: 

( d / a t ) u (  t, x) = Au(  t ,  x) 

u(0, x) = 0 

U( t, 0) = a( 1 )  

u ( t ,  a )  = P ( t )  t > O  

t > 0, x E (0, a )  

x E (0, a )  

t > O  
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for prescribed (non-negative) functions a ( ? )  and p( t )  with a suitable condition. Put, 
for t > 0 and x, y E [0, a ] ,  

K( t, x, y )  = ;( r t ) - ’ I2  exp[ - (x - ~ ) ~ / 4 t ]  

U ( t ,  x, y ) = 
m 

[ K ( t, x, y + 2 ma) - K ( t ,  x, - y  + 2 m a ) ] .  
m = - a ,  

Then the solution of (2.7)-(2.10) is written as 

U( t ,  x) = ( a / a y )  U (  t - s, x, O)a( s) ds  - ( a / a y )  U (  t - s, x, a)P(  s) ds. Iof I,’ 
By a straightforward calculation we obtain 

j’o+o( p )  = [p”2/tanh(ap’’2)]&( p) -[p’l’/sinh(ap’’*)]~(p) 

where j ,+,( t )  = - ( a / a x ) u (  t ,  0). This proves the lemma. 

By virtue of (2.6), we can rewrite (2.5) as 

Mnm(p)Gm(p)=Sno nE V 
W E  v 

where 

Mnm( p) = [ p l i 2 /  tanh( anfp1/*)]SnW -p’/2/sinh( anmpl”) 
I ( n )  

(2.11) 

(2.12) 

(2.13 

Since the diagonal part M d i a g  of M (  p )  is invertible for p > o and (I + h!fdil!gkfofi.diag)- 

exists for p > 0, M ( p )  is invertible for p > 0. Then we obtain from (2.11) 

Gn(p)=M,i(p)  P > O *  (2.14) 

This solves (2.3)-(2.5) essentially. 

we can write formally 
Next we regard Gn(p )  as the two-point function of a free field (&),,€ on V. Since 

+ M ( P ) ~  = 1 [~”~/s inh(anmp”~)I (4n  - 4 m ) *  
( n , m ) € B  

+ 1 p’/2tanh(~an,,,p1’2)42, 
n s V  m ( n )  

(2.15) 

the matrix M (  p), p > 0, satisfies the hypothesis (F - 1) - (  F - 3)  in the appendix. Then, 
as is shown in the appendix, ( F ( 4 ) ) M ‘ p ’  is well defined by ( A l )  for L= M ( p )  as the 
infinite volume limit, where F(4) is a polynomial depending on the finite number of 
variables &. For a matrix L of finite size, it holds that (4,,~$,,,)~ = L;,!,. As an infinite 
volume version, we have 

Proposition 2.2. For p > 0 it holds that 

Gn(p) = (4n40)M(P) n e V .  
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3. Topological invariance of the spectral dimension 

The spectral dimension d' characterises the infrared behaviour of dynamical processes 
on a fractal (Rammal and Toulouse 1983). In this paper we define d" for a network Z 
by the following asymptotic form of the solution u ( t ,  0) of (2.3)-(2.5): 

u ( t , O ) -  t - J l 2  ?-,W. (3.1) 

This can be translated into the Laplace transform as 
d/2-1 p + + o  (3.2) Go( P) - P 

if d" < 2. For the d-dimensional Sierpinski gasket, d' = 2 loglo(d + l)/loglo(d + 3) (Ram- 
mal and Toulouse 1983), and for the square lattices, d' = 2 (see also Ben-Avraham and 
Havlin 1983, Hilfer and Blumen 1984). In this section we are concerned with topological 
invariance of the spectral dimension. We say that two networks X") and E(*) are 
topologically equivalent if = v(') a nd B(')  = I?('), where V ( i )  and I?(') are the set of 
all vertices and the set of all bonds in respectively. Then we can prove 

Theorem 3.1. Let Z"), i = 1,2, be topologically equivalent networks satisfying 

c, < aL?/a',fl, < c, (n ,  m )  E B ( ~ ) ,  i = 1,2 (3.3) 
for some constants C1 and C2 > 0. Suppose that Z(') has the spectral dimension d' < 2. 
Then Z(2) has the same spectral dimension d 

We write B = B") = B"' a nd V =  V(') = V'" . T o prove the theorem, we consider 
matrices M("(  p ) ,  i = 1,2, defined similarly as M (  p )  in 0 2: explicitly 

+ M ( i ) ( p ) ~  = c [p'/'/~inh(a',,!,p'/')](~~ - &)' 
( n , m ) e B  

Lemma 3.2. If a',fl, 6 a:? for any (n ,  m )  E B, it holds that 

PE(O,1) 2 M(') log,o(+o) - l o g l o ( ~ ~ ) M ' z ~ ~  c sup (a:? -a;;) 
( n , m ) E  B 

where C is independent of p E (0 , l ) .  

Proof: We apply lemma A2 (ii) from the appendix to 

Ji,!, = p1'2/sinh(a!,!,p1/2) (n, m )  E B 

= O  ( n ,  m ) a  B 

(3.5) 
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Proof of the theorem. First we prove the theorem when there exists a constant K such 
that 

ay; < K (n, m )  E B, i = 1,2 .  (3.6) 

Put, for ( n ,  m) E B, 

a;? = (E/K)a',311 

a:% = (K /E)a ; ; .  

Then it holds that 

a!,? s a!,: s ay; ( n , m ) E B .  (3.7) 

Let (4t)M('1, i = 0 , 3 ,  be defined by (3.4) for i = 0 , 3 .  Then lemma 3.2, together with 
(3.7), implies 

log( &)M(o'  - log( 4;)""' s CK (3.8) 
and 

log(4t)M(2) -log(+g)M(3),s CK2/&. 

Obviously (&JM"', i = 0, 1,3,  share the same asymptotic behaviour as (3.2), i.e. 

(3.9) 

i = 0, 3. (3.10) 

Thanks to (3.8) and (3.9), (3.10) also holds for i = 2. 
In general cases, we add new vertices on long bonds: on each bond (n ,  m )  E B in 

each network E('), i = 1 ,2 ,  we add k - 1 vertices and divide the bond into k equal parts, 
where k - 1 < ay; s k. We denote the resulting networks by E'(i), i = 1 ,2 ,  respectively. 
Then the length bci  of a bond (n, m )  in satisfies 

(3.11) 

Thus the general case reduces to the case satisfying (3.6). 

Since the spectral dimension d' reflects only the long distance behaviour of a fractal, 
the definition of d' should be independent of the choice of the origin 0. In fact, we 
have the rigorous proof using theorem 3 .1 ,  

Theorem 3.3. If a network Z has a spectral dimension d' < 2, then d' is independent 
of the choice of the origin O E  V. 

We first prove the following lemma on the decimation of spin. 

Lemma 3.4. Let 1 be a site of C different from the origin and put VI = { n E V: (n, 1 )  E B} .  
We consider the network C") obtained by eliminating site 1 and the bonds connected 
to 1 and then adding bonds, (n, m), for n, m E V ,  (unless (n ,  m )  E B )  with arbitrary 
lengths. Then the spectral dimension of I;") coincides with that of X if the latter exists 
and is smaller than 2. 

ProoJ: Let B, be the set of all bonds (n ,  m) E B such that n, m E V ,  U { 1). Thanks to 
theorem 3.1,  we can trim the bonds (n ,  m )  E B1 so that a,,,,, = a for a constant a > 0 
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without changing the value of d. We now approximate the matrix M ( p )  defined by 
(2.15) as follows. Put, for n, m E V, 

Jkm = l / a  if (n, m)E B1 

if ( n ,  m )  E B\Bl = p’/2/sinh(anmp’/2) 

= O  otherwise 

and put, for n E V ,  

g ;  = aP i f n E  V l u { l }  

= pl’2tanh($anmp’/2) otherwise. 
m ( n )  

By means of JLm and g ; ,  we define the symmetric matrix M‘ by 

4 ~ ’ 4 = $  J A m ( 4 n - 4 m 1 2 +  C gL42,. 
n,mE V n e  V 

Then it holds that 

JLm -p”2/sinh( a,mp”2) = O( p )  

gk - 1 p1’2tanh(fa,mp’’2) = O( p )  

g ;  > min(ap, p’/2tanh(fq’/2)) = O( p )  

m ( n )  

(3.12) 

(3.13) 

uniformly in n, m E V .  Therefore we can use (A9) in the appendix to obtain 

I l o g ( 4 Y  - log(43M’I < c 
where C > 0 is independent of p E (0, 1 ) .  

respect to q51 in (~$ i )~’ .  The resulting expression is again a free field correlation: 

(3.14) 

We next decimate the degree of freedom 41, i.e. carry out the integrations with 

(&)”’= (4;)“”. 

4 ~ ” 4 = = t  J L n ( 4 n - + m ) 2 +  C g:42n 

Here M” is defined by 

n , m s  V\(I )  nE V\(1J 

where J ;  and gx are given by the following equality: 

if n, mE VI and (n, m)E B1 
a a 2 p +  NI 

J:,,, =I ( 1  + 

i f n , m E  V l a n d ( n , m ) e B B ,  

= Jkm otherwise 

and 

= g: 

where NI = Z l n ( , )  1 .  

otherwise 
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Next we consider the network I;"'. Here we assign to each bond (n, m )  in I:") the 
length a:A given by 

Nl+l  
a a(')  -- 

NI 
if (n ,  m) E B,, nm - 

a -- - 
NI 

= a n m  otherwise. 

if n, m E VI and (n ,  m)a B, 

Then lemma A 2  (ii) implies that 

)log( &"'" -log( 4 y ' I  < C'  p E ( 0 9 1 )  

where M " )  is given by (2.15) with an, replaced by a::, and C' is a constant independent 
of p. This, together with (3.14), implies 

/log( &)""' - log( C$;y  1 < C" P E  (091).  (3.15) 

Thus we complete the decimation of the degree of freedom 4' and obt_ain a diffusion 
process on I;"). (3.15) shows that I: and I;") have the same value of d. Then thanks 
to theorem 3.1 we have the lemma. 

Theorem 3.3 is a simple consequence of the following lemma, im_plying that we 
can move the origin to an adjacent site without varying the value of d. 

Lemma 3.5. Let ( 1 , 2 )  be a bond of a network Z with d' < 2 and let I:, be the network 
obtained from I; by setting a,, = 0. Then I;, has the same spectral dimension d'. 

Proog First we consider the case C m ( , ,  1 = 1.  If site 1 is not the origin 0, lemma 3.4 
yields lemma 3.5. In case site 1 is at the origin 0, thanks to the assumption I ; " ( ] )  1 = 1,  
we can carry out the integrations with respect to 4" = in (4;)M and obtain 

(43" = Cl(P)(4:)"0+ C,(P)  
where O<< C,( p )  << CO, j = 1 , 2 ,  for 0 < p < 1, and MO is the matrix describing the diffusion 
on Z,. This implies the lemma. 

Next we deal with the case 

(3.16) 

In this case, the constant C in (3.5) can be chosen independently of p and ai.'i),j = 1 , 2 .  
Therefore, if we write ( 

lOg(~;L~-log(&L < c3 (3.17) 

where O <  a ' <  a < 1 and C3 is independent of a',  U and p E ( 0 , l ) .  Let a ' +  0 in (3.17).  
Then we obtain 

= ( a ) ,  as a function of a = alz, we have 

(3.18) 

(3.19) 
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(The equality (3.19) will be plausible because of the electric circuit analogue used in 
the proof of lemma A1 in the appendix. A rigorous proof of (3.19) is obtained by 
means of the equality 

112 - 1  lim(2(.rr~) ) exp( - ( 4 ,  - 42)2/47) = a(41 - 4 2 )  7-0 

which works under the condition (3.16).) 

the site 1 .  Lemma 3.4 implies 
Next, in the original network Z, assuming that site 1 is not the origin, we decimate 

(3.20) 

where M ( ' )  is the matrix describing the diffusion on and C, is independent of 
p E (0 , l ) .  Note that the network Z(I) is obtained from Zo by varying the lengths of 
bonds connected t? the site 1 = 2 and, if necessary, by adding finite bonds. The former 
procedure leaves d unchanged (theorem 3.1), while the latter does not decrease d' as 
is shown by the same method as lemma 3.2. Then we have 

2 M ( ' )  I l o g ( 4 Y  - l O d 4 0 )  I < c4 

(3.21) 

Combining (3.18), (3.20) and (3.21), we obtain 

which proves the lemma. 

Successive applications of (3.22) yield theorem 3.3. 
We now proceed to show that d' of a network Z is determined by  its global topology. 

In order to formulate the notion of global topology, we prepare some new terminology. 
Let 2 ,  be a sub-network of Z, i.e. a network obtained by eliminating some sites and 
bonds of Z. A site n of Z, is called an interior point of Z, if any bond ( n ,  m )  of Z is 
also a bond of 2, .  Otherwise it is called a boundary point. We say that a sub-network 
Zl  is a block of Z if 2 ,  has finite sites and if any pair of its boundary points can be 
connected with one another by a bond in Z, directly or by a series of bonds in Z, only 
through interior points of Z,. Let Z,, a = 1 ,2 ,  . . . , be blocks of Z containing a uniformly 
bounded number of sites and having the property that, if for a # p ,  2 ,  and X p  have 
a site n in common, n is a boundary point of Z, and Zp. In each block Z,, we eliminate 
all interior points in it and all bonds connected to them. The resulting network X* is 
called a skeleton of Z. We say that networks Z(l)  and Z(2) are globally equivalent if we 
can extract skeletons Z(i)* of for i = 1 , 2  in such a way that the extracted skeletons 
are topologically equivalent. Then we have the following theorem. 

Theorem 3.6. Let Z") and be globally equivalent networks with bonds of uniformly 
bounded lengths. If Z'l) has a spectral dimension d' < 2, then Z(2) has the same spectral 
dimension d'. 

Prooj Let Z(')*, i = 1,2,  be topologically equivalent skeletons of Z('), i = 1,2,  respec- 
tively, and let Zb), a = 1 , 2 , .  . . , i = 1,2,  be the blocks defining the skeletons E(')*, 
i = 1 ,2 ,  respectively. Thanks to theorem 3.3 we can assume that the origin of E['), 
i = 1,2,  lies on the skeleton Z(')*, i = 1,2,  respectively, and that the origins occupy the 
corresponding sites in each network. In the same way as in the proof of lemma 3.4, 
we decimate all interior points in all blocks Z:', a = 1 , 2 , .  . . , i = 1 ,2 .  The resulting 
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networks I;’( i ) ,  i = 1,2, are topologically equivalent, and the length of their bonds are 
uniformly bounded from below and above. Then, applying theorem 3.1 to E”’) and 
I;’(2), we have the theorem. 

4. Continuum limit 

On the fractal for which d’< d holds, diffusion exhibits an anomalous behaviour 
(Rammal and Toulouse 1983) (see (4.10)). Intuitively the anomaly causes the localisa- 
tion of a random walker. In this section we shall explain the localisation by the analysis 
of the continuum limit of the free field on the fractal. 

embedded in Rd in such a way that each bond is realised 
as a line segment in Rd and that the origin of I; is located at O E R ~ .  We assume the 
self-similarity of I;, i.e. I; c pZ for some 0 < p < 1, where PI; denotes the reduction of 
I; by a factor p with 0 as a centre. We are concerned with the diffusion process on 
pk I ;  in the limit as k+w,  i.e. the continuum limit. 

For k = 1,2 , .  . . ,we denote by M ( k ;  p )  the matrix defined by (2.15) with a,,,,, 
replaced by Pkan,,,. Let us consider the quantity 

Consider a network 

Gkk)(6; p )  = pk(l-b)(+O+P-ix)M(k;P) (4.1) 

where x E Rd is fixed so that we find a vertex of pkI; at x E Rd for a sufficiently large 
k :  the vertex is denoted by p - k ~ ,  which indicates the distance from 0 measured in 
units of the lattice. The factor P k ( ’ - ’ )  on the right-hand side of (4.1) renormalises the 
wavefunction 4,,. The canonical renormalisation corresponds to the value 6 = d: This 
is a straightforward extension to a fractal of the renormalisation of the free field on 
the square lattice. We shall study the limit of GLk’( 6 ; p )  as k + 00. 

We first consider the case x = 0. 

Proposition 4.1.  If I; has the spectral dimension d’ < 2, then it holds that 

k + m  (4.2) 
k ( d - 6 )  Gbk’(6; P) - P 

for a fixed p > 0. 

ProoJ: Since each entry of M ( p )  defined by (2.15) is a function of ~ , , , , , p ” ~  multiplied 
by p ’ l 2 ,  (+ i )M‘k’p ’  is a function of pkp’ ’2  multiplied by p- ’ / ’ :  

p-l%(pkpl’Z). (4.3) ( 4 , Z g ) M ( k : p i  = 

Since PkI; has the spectral dimension d’ for each k = 1,2, . . . , we have 

p -3 0. (4.4) 
( + i ) M ( k : p )  - p d / 2 - 1  

Compari3g the right-hand sides of (4.3) and (4.4), we find the asymptotic form 
h( 6) - gd-’  as 6 + 0. Then (4.3) implies 

for small p and large k. This proves (4.2). 

In particular, if we assume d’<d, Gik’ (d ;p )+cc  as k + a  for any p>O.  This 
indicates the absence of diffusion in the continuum limit. 
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Next we discuss the case x # 0. We need some further assumptions. Suppose that 

(2-3) Let L(y), P L O ,  be the matrix defined by 
all bonds in Z have equal length a and that 2 satisfies the following property. 

~ L ( P I ~ =  C ( A - 4 m ) ' + P Z  C Nn4Z, 

(404n),/(43fi - ( ~ * l n l ) ~  exp(-w*lnl) (4.6) 

( n ,  m ) E B  n E  v 

where Nn = Zm(,,) 1. We write ( ), = ( * )L(p). Then, for large In[, it holds that 

for some constants a and y*, where In1 denotes the distance between the sites n and 
0 measured in units of the lattice. Here, a is independent of p and satisfies 

(Y>-2-d (4.7) 
while y* depends on y as 

C L * - I . L y  (4.8) 
for small y > 0, where v E R is independent of y. 

As is well known, the square lattice satisfies (2 -3) for a = - 5  and v = 1. Under 
these assumptions, we shall discuss the continuum limit for x f 0 by rough arguments. 

First we derive the relation 

v = d / d  (4.9) 
Consider a random walk x( t), t 3 0, on Z starting at 0. As is shown by Rammal and 
Toulouse (1983), the mean square radius (x( t)') is asymptotically written as 

(x( t)') - tdId t-oo. (4.10) 

On the other hand, using the solution u(t, x) of (2.3)-(2.5), we can write the mean 
square radius: 

This implies 

(4.11) 

We approximate the right-hand side of (4.1 1) as follows: for each x E Z, we choose 
some vertex n E V near to x, and replace u'(p, x)  by G ( p ,  n )  = (40q5n)M(P). Next we 
approximate the action + M ( p ) 4  by 

~ M O ( P ) ~ =  C ( 1 / a ) ( 4 n - 4 m I 2 +  C tapNn42n. 
( n , m ) c B  n E  v 

Since we are going to take the continuum limit, we shall use the above approximation 
only for small a. In such a case M ( p )  - M o ( p )  is small. Then we have 

u'(P,  n) - ( q 5 o 4 J M 0  
= a(404n)a(p/2)'/2. 

Therefore it holds that 

(4.12) 
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This, combined with (4.6) and (3.2), implies 
d / 2 - 1  C(P, n) - ( ~ * l n l ) ~  exp(-p*lnl)p 

/&* - (a2p) Y'2 

for large In1 and small p,  where 

p + 0. 

Lastly we approximate the volume element: 

where r = 1x1. Using these approximations, we rewrite (4.11) as 

P - d / d - l  - Y U  ( v u + d ) / 2 - 1  r l + u + d  exp(-p*r) dr. 
a P  Jom 

This, together with (4.7) and (4.8), implies 

P+O 
- d / d - ~  - a - ~ ( d + 2 )  -v(d+2)/2+2/2-1 

P P 
from which (4.9) follows. 

continuum limit if d' < d and d' < 2, i.e. 
By virtue of (4.9), we can easily derive the fact that diffusion does not occur in the 

lim GLk'(8; p)  = O  p>O,x#O 
k-m 

(4.13) 

for any choice of S E R. Now fix p > 0 arbitrarily. We use (4.12) (for a replaced by 
p k )  and (4.6) (for x replaced by P-'x) to obtain 

( ~ o ~ , - ~ x ) M ( k ; P ) / ( ~ z o ) M ( k ; P )  - (FZP - k l  XI )" exp( -/&FP - klXl)  

where pz - pk"  = pkdJd as k +  CO. This, combined with (4.5), implies 

1x1) G L k ) ( S ;  p)  - p k [ u ( d / z - l ) + d - S l  lxl' exp(-P k ( d / z - l )  

as k + m .  Letting k + m ,  we obtain (4.13). 

5. Bond-moving approximation for the Sierpinski carpet 

As is roughly shown in the preceding section, if diffusion occurs in the continuum 
limit, the equality d' = d holds. However we have no example satisfying d' = d except 
for the regular lattices. If such an example exists, it will be an infinitely ramified 
fractal. For some class of finitely ramified fractals, the spectral dimension d' can be 
evaluated by exact renormalisation group schemes (Hilfer and Blumen 1984, see also 
Ben-Avraham and Havlin 1983). However, for infinitely ramified fractals, the value 
of 2 is still unknown. Therefore it will not be meaningless to obtain an approximate 
value of 2 for an infinitely ramified fractal. 

We consider a Sierpinski carpet (sc)  constructed in the following way: we start 
with a square of side length a > 0 (figure l (a ) ) .  We assemble the eight copies of the 
square into a large square of side length 3a (figure l (b) ) .  The procedure is then 
repeated for the larger square and iterated infinitely. 

Gefen et al (1984) studied the Ising model and resistor networks on the sc (and 
on its variations) by approximate renormalisation group schemes, i.e. the bond-moving 
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Figure 1. The Sierpinski carpet as a network: the initial square and the first two construction 
stages are shown. 

approximation (Migdal-Kadanov renormalisation) (Burkhardt 1982). In particular, 
they obtained conductance exponents f approximately. Therefore, if we use the 
conjectured relation (Rammal and Toulouse 1983) 

f = (8 /  2)(2 - 2) (5.1) 
we can evaluate (i However, the recursion relation (4.1) in Gefen et a1 (1984) is 
inconsistent with the bond-moving procedure used in 0 3 of the same paper. In fact, 
the latter gives equation ( 5 )  in Gefen er a1 (1983) instead of (4.1) in Gefen et a1 (1984). 
Using this equation ( 5 ) ,  we obtain 3- log,, i/log,, 3 = 0.1403 for our sc, which together 
with (5.1) implies 

In this section we shall show that the same value of 2 as (5.2) is obtained directly 

Consider the free field on sc with the action 
by the bond-moving approximation without using (5.1). 

where we put J,, = K and g,, = h if (n, m )  is a bond which borders the exterior of 
the sc or borders a courtyard (the hatched square in figure 1) made out at one of the 
stages of the construction. Otherwise, we put Jnm = J and g,, = g for J, K, g ,  h > 0. In 
the following we write ( . ) L  = ( * ) J K g h  and denote the corner of sc by 0. 

We apply the bond-moving technique to sc as in 0 3 of Gefen et a1 (1984): we 
decimate such degrees of freedom 4n that n is a corner of one of the smallest courtyards 
(hatched squares of side length a )  or that n is one of the nearest-neighbour sites of 
the corners. After the decimation, the resulting network is the sc of a lattice spacing 
3a, and we obtain 

( 4 : ) J K g h  ( 4 : ) J ' K ' g ' h '  (5.3) 
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where 

9J2(J  + 2 K )  
(3  J + 4g + 2h) (5  J +4K + 4g + 2 h )  

J '  = 

2 K ( J + K ) '  
( J  + K + g +3h)(  J + 5K + g + 3 h )  

K '  = 

3J(4g  + 2 h )  
g' = 3 g  + 3 J + 4g + 2h 

( J + K ) ( g + 3 h )  h '= g +  h + 
J + K + g + 3 h  ' 

(5 .4a )  

(5.46) 

(5.4c) 

(5.4d) 

Of course we can iterate the procedure any number of times. However the approxima- 
tion (5.3) will be good only for J,K >> g,h. The reason is understood intuitively by the 
electric circuit analogue used in the proof of lemma Al.  If J and K are small, a 
resistor on a bond insulates nearest-neighbour sites. Then the procedure to move 
resistors across the insulators will cause a fatal change of character. 

Let us apply the above approximation for a free field to the problem of diffusion 
on the sc. Now fix p > O .  We start with the sc of lattice spacing ~ = 3 - ~  for a 
sufficiently large N for which 3-Np''2<< 1.  In this case the action 4 M ( p ) 4  defined 
by (2.15) is well approximated by 

+W= 1 3"(4n-4m12+ :3-"~4'n 
( n , m ) s B  n s  V 

where we used lemma A2 (i). Then we put 

Jo = Ko = 3 " 
go= ho=43-"p 

and define Jk, Kk, g k ,  h k ,  k = 1 ,2 , .  . . , inductively by (5.4). 
Since we use (5.3) only for J, K >> g,h, we approximate (5.4) for J,K >> g ,h :  

J ( 3 J + 6 K )  
5 J + 4 K  

2 K ( J + K )  
J + 5 K  

J '  = 

K '  = 

g' = 7 g  + 2 h 

h' = 2g + 4h. 

(5 .5a)  

(5.56) 

(5.5c) 

( 5 . 5 d )  

A primitive analysis shows that the ratio K, /J ,  rapidly converges to 4 and that 

J,, K n  = (6 /7 ) "3N 

On the other hand, ( 5 . 5 ~ )  and (5.5d) imply 

g,, h, = 8"3-"p 

1 << n << 00. 

1 << n << CO. 

Note that J ,  and K ,  decrease whereas g, and h, increase. We now choose A >> 1 
arbitrarily and denote by n* the value of n such that J , , / g ,=A,  i.e. n*= 
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N log 9/log (28/3) = aN. Put 

g* = gn.  = 8aN3-Np. 

Then successive applications of (5.3) imply 

(4$Jo&GoHo (4g)Ag*.Ag*,g*.g* 

= !?*-'(4g)AAll* 

From (5.7) we can find the value of d: the asymptotic form (4.5) implies 

( 4 3 J o K o g o h o  - 3-N(d-1) N + W .  

Since (&),,,, is independent of N, (5.7) and (5.8) show g* -3N(d-1). This, combined 
with (5.6),  implies (5.2). 

We conclude this section with the following remarks. 
(i) We analysed above the massive (but almost massless) free fields, while the 

argument by Gefen et a1 (1984) deriving the values of corresponds to the massless 
case. The agreement in the resulting values of d being reasonable, its significance will 
rather be found in the confirmation of the conjecture (5.1) in the case of our sc. 

(ii) As for the reliability of the Migdal-Kadanov renormalisation, we know little. 
We here try to test the procedure by applying it to the two-dimensional Sierpinski 
gasket obtained by connecting three midpoints on a regular triangle successively 
(Rammal and Toulouse 1983). It is well known that d = 2 log 3/log 5 (Rammal and 
Toulouse 1983). Applying the Migdal-Kadanov renormalisation, we obtain d = 
2 log 3/log (9/2), which is larger than the exact value. Then we could expect that, 
for our sc, d'< 2 log 8/log (28/3). 

(iii) (5.2) gives d / d =  log 9/log (28/3) = 0.9837 since d = log 8/log 3 = 1.8928. 
Then we expect that diffusion does not occur on the sc in the continuum limit as a 
prediction by the Migdal-Kadanov renormalisation. (The discussion in (ii) strengthens 
this expectation.) 

6. Conclusion 

In this paper we have analysed diffusion on a wire network. Assuming d' < 2, we give 
a rigorous proof for the fact that the local geometry of a fractal is irrelevant to the 
spectral dimension d'. For a fractal satisfying d'< min(2, d ) ,  we roughly showed a 
complete localisation in the continuum limit under an assumption for the free field 
on the fractal. The bond-moving approximation predicts that diffusion does not occur 
on a Sierpinski carpet in the continuum limit. Whether there exists a fractal (other 
than the regular lattices, etc) satisfying d' = d is unknown. 
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Appendix. Basic estimates for free fields 

Let V be a lattice with countably many vertices. We consider a free field on V where 
the thermal expectation of a polynomial F ( + )  is given by 

First we prove the well definedness of ( F ( d ) ) L  as the infinite volume limit (for 
details, see Griffiths 1972). We assume 

(F-1) For ( n , m ) E  V , J n , 2 0 .  
(F - 2) For a fixed n E V, Jnm > 0 only for at most N vertices m, where N is 

(F - 3) There exists a constant g > 0 such that g ,  > g, n E V. 
independent of n. 

The well definedness of (F (d ) )L  for a monomial F ( 4 )  follows from the super- 
stability 

(F( +))knite < constant independent of the volume (‘43) 

and the monotonicity of the left-hand side of (A3) with respect to the volume. The 
superstability (A3) is easily shown by the Gaussian (in)equality 

( G( 4 ) d n ) k n i t e  volume 

In fact, by means of (A4) we can write (F(~) )~ni tevolume as a polynomial of two-point 
correlations (c$i~j)knitevolume, each one of which converges to L,’ as the volume tends 
to a. On the other hand, the monotonicity can be shown by the Griffiths inequality 
I1 (Griffiths 1972). 

Next we establish 

Lemma AI.  Fix an origin O E  V arbitrarily. Then we have the following estimates: 

0 s  ( + o + n ) L  s ( d 3 L  n E  V (A5) 

where L and ( are defined by ( A l )  and (A2), respectively, and we assume 
( F -  l ) - ( F - 3 ) .  

Proof: We give here an intuitive proof by means of the electric circuit analogue (Straley 
1980). We connect each vertex n E V with the ground by a resistor with conductivity 
g, (0-l). Furthermore, for every pair (n ,  m )  of vertices of V such that J,, > 0, we 
connect them by a resistor with conductivity J,,(Cl-’). If we apply a direct current 
of 1A (from the power supply) to the origin 0, we shall detect the voltage (+odn)L (V) 
at each vertex n e  V. Then (A5) is intuitively valid. Since the total current is 
X,,vgn(+o+n)L = 1 (A), we obtain (A6). 
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Lemma A2. Let L('), a = 1,2,  be the matrix defined by (A2) with J,,, and g ,  replaced 
by Jyd and g?', a = 1,2, respectively, which are assumed to satisfy ( F -  l)-(F-3). 

(i) Suppose that 

for some constants K and K ' .  Then it holds that 

l l og (4 i )L(Z1- log (4 i )L~111~2N(K+ K ' ) / g .  ('49) 

log (q5i)L'1'-10g (4i)L'21S K ' / g .  ('410) 

( i i )  If we assume j'.s?, s Jy!, n, m E V, together with (A8), we have 

Proof: Put, for t E [O, 11, 

Jn,( t )  = ( 1  - t)J?! + tJ:: 

gn( t )  = ( 1  - t)gi'+ tg'," 

n , m E V  

n E  V. 

Then .J,,,,( t )  2 0, g,,( t )  > g and, for each n, .I,,,( t )  is non-zero only for at most 2 N 
vertices m. Let L ( t )  denote the matrix defined by (A2) with J,,  and g ,  replaced by 
J , , ( t )  and g,(t), respectively. Interchanging the order of d/dt  and ( ), we have 

(d/dt)(  4i)L( 'J = -i(r$zc$L'( t )4 )L(r )  +i(4i)L"'( +L'( f)4)L( ') .  ( A l l )  
We now note that the infinite volume version of (A4) implies 

( 4 n 4 b 4 c 4 d  )'('I = (404b)~'  4 c 4 d  ) L ( r )  + ( b a 4 c ) L ( r ) ( 4 b 4 d  ) L ( r )  + ( ( $ a 4 d  ) L ( r ) (  4 b 4 c )  L ( r ) *  

Using the above formula, we obtain from ( A l l )  

By means of (A5) and (A6) (for L replaced by L ( t ) ) ,  we can estimate the right-hand 
side of (A12): 

I(d/dt)(($i)L"'I s N ( K  + K ' ) ( 4 i ) L ( ' i  (404n)L(' i  
n E  V 

( K  + K ' ) ( 2 N / g ) ( 4 y ' )  

where we used the estimate ILL,( t ) ]  s K + K ' .  This proves (A9). If we assume J:: - 
J',sI, 2 0, (A12) implies 

( d / W ( 4 Y r ) 2  - c g'n(t)[(4o4,)"'I2 
n s  V 

2 - ( K'/g) (c$: )L(rJ  
which shows (A10). 
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